Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Med ; 12(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37834980

RESUMO

(1) Background: A surgical operation on an inflamed bowel is, diachronically, a challenge for the surgeon, especially for patients with inflammatory bowel disease. Adipose tissue-derived mesenchymal stromal cells are already in use in clinical settings for their anti-inflammatory properties. The rationale of the current study was to use AdMSCs in high-risk anastomoses to monitor if they attenuate inflammation and prevent anastomotic leak. (2) Methods: a total of 4 groups of rats were subjected to a surgical transection of the large intestine and primary anastomosis. In two groups, DSS 5% was administered for 7 days prior to the procedure, to induce acute intestinal inflammation. After the anastomosis, 5 × 106 autologous AdMSCs or an acellular solution was injected locally. Macroscopic evaluation, bursting pressure, hydroxyproline, and inflammatory cytokine expression were the parameters measured on the 8th post-operative day. (3) Results: Significantly less intra-abdominal complications, higher bursting pressures, and a decrease in pro-inflammatory markers were found in the groups that received AdMSCs. No difference in VEGF expression was observed on the 8th post-operative day. (4) Conclusions: AdMSCs attenuate inflammation in cases of acutely inflamed anastomosis.

2.
Int J Dev Biol ; 66(1-2-3): 9-22, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34549795

RESUMO

Although neuron birth and death are two contradictory processes, they serve the same purpose of the formation of the brain. They coexist during brain development, when cytoarchitecture and synaptic contacts are progressively established. It is the highly programmed interplay between these two processes that results in the making of a mature, complex-wired, functional brain. Neurogenesis is the process that begins with the birth of naïve new neurons, which are gradually specified to their prospective cell fate, translocate through migratory streams to the brain area they are destined for, and terminally differentiate into mature neurons that integrate into neuronal networks with sophisticated functions. This is an ongoing process until adulthood, when it mediates brain neuroplasticity. Neuron death is the process through which the fine sculpting and modeling of the brain is achieved. It serves to adjust final neuron numbers, exerting quality control over neurons that birth has generated or overproduced. It additionally corrects early wiring and performs systems matching by negatively selecting neurons that fail to gain neurotransmitter-mediated neuronal activity or receive neurotrophic support for maintenance and function. It is also a means by which organizing centers and transient structures are removed early in morphogenesis. Both processes are evolutionary conserved, genetically programmed and orchestrated by the same signaling factors regulating the cell cycle, neuronal activity/neurotransmitter action and neurotrophic support. This review summarizes and highlights recent knowledge with regard to birth and death of neurons, the two mutually dependent contributors to the formation of the highly evolved mammalian brain.


Assuntos
Neurogênese , Neurônios , Animais , Encéfalo , Mamíferos , Neurogênese/fisiologia , Plasticidade Neuronal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...